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The NASA Mission

To understand and protect our home planet 
To explore the Universe and search for life 
To inspire the next generation of explorers 

… as only NASA can. 
Sean O’Keefe 
NASA Administrator,  
April 12, 2002



What Are Evolvable Systems?

A system that changes over time to become better…

Changing its shape, its function, or becoming smarter…

All under the guidance of a process derived from biological 
evolution.





Powerful Problem Solvers

The Brain

Artificial Neural Networks used in many applications: fraud detection, image 
processing, navigation, robotics, many more…

The Evolution Mechanism

Artificial Evolution is finding use in many applications: jet engine optimization, circuit 
and antenna design, many more…



Evolution

Evolution: Cumulative changes a population or species undergoes 
over time

Artificial Selection: thousands of years of 
animal & plant breeding

Charles Darwin

Darwinian Evolution
Natural Selection: “survival of the fittest”
surviving till you can reproduce (and pass 
on your genes)
Result in new organisms and species

Neo-Darwinism
Add genetics (Mendel)
Natural Selection acting on 
genetic variations
We will model this inside a 
computer Gregor Mendel



Metaphors

C, H, O, N
+

environment

complex
structures

Biological Evolution
billions of years

Artificial Evolution complex
structures

engineered
components

+
environment computer time

The Computer Program 
that Simulates Artificial 
Evolution is Called an

“Evolutionary Algorithm”



Evolutionary Algorithm

Let’s say you want to design bicycles:

The algorithm would start 
with a set of randomly-
designed bicycle 
“chromosomes”

The algorithm might find  
bicycle “chromosomes” 
that performed as desired

Algorithm
Runs
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Representing Designs
to the Evolutionary Algorithm

Representation of an individual can be using discrete values 
(binary, integer, or any other system with a discrete set of values). 

Binary representation:

ChromosomeChromosome

GENEGENE



Chromosome Example

Phenotype could be integer numbers

Genotype: Phenotype:
= 163

1*21*27 7 + 0*2+ 0*26 6 + 1*2+ 1*25 5 + 0*2+ 0*24 4 + 0*2+ 0*23 3 + 0*2+ 0*22 2 + 1*2+ 1*21 1 + 1*2+ 1*200 ==
128 + 32 + 2 + 1 = 163128 + 32 + 2 + 1 = 163



Mutation

1  1  1  1  1  1  1

1  1  1  0  1  1  1after

mutated gene

before



Crossover

. . .Population:

1  1  1  1  1  1  1 0  0  0  0  0  0  0 parents
cut cut

1  1  1  0  0  0  0 0  0  0  1  1  1  1 offspring



Evolutionary Design Computer

Parallel
Search

Algorithm

Best Solution 
Found

outin Simulator

GA • GP • Hybrid • Coevolution • Annealing
Memetic • Heuristic • Traditional • Others

• Supercomputer: 32 
PCs running Linux





Automated 
Antenna 
Design

Coevolutionary 
Algorithms

Evolutionary 
Scheduling 
for Satellite 

Fleets

Fault Recovery for 
Reconfigurable 

Systems

Automated 
Circuit 
Design



Why Evolvable Systems?

Motivation

• Building  reliable complex systems with unreliable
parts is an unsolved problem (designability)

• Nature solved it long ago – evolution is primary force
• Automated design a pre-requisite for certain

nanotechnologies
• Benefits: Fault-tolerance/Survivability, Designability, 

Autonomy





Circuit Construction

• Template circuit

• Set of selectable components:



Evolving Circuits

circuit
design

genetic
representation

SPICE
circuit

simulator

Fitness
Calculation

circuit-constructing
program SPICE

netlist



Circuit Design Application

Design and optimization

evolved circuit



Evolved 85 dB Amplifier

Evolved Circuit-Constructing Program
transistor(N, ACTIVE_NODE, NEW_NODE, INPUT_NODE);
transistor(N, BASE, ACTIVE_NODE, PREVIOUS_NODE);
resistor_cast_to_ps(4.618467e+04);
capacitor_cast_to_input(1.628423e-04);
transistor(N, NEW_NODE, ACTIVE_NODE, GROUND_NODE);
resistor_cast_to_ps(9.396477e+04);
transistor(N, NEW_NODE, ACTIVE_NODE, GROUND_NODE);
transistor(P, NEW_NODE, ACTIVE_NODE, PS_NODE);
transistor(N, NEW_NODE, ACTIVE_NODE, PS_NODE);
transistor(N, PS_NODE, ACTIVE_NODE, NEW_NODE);
resistor_move_to_output(1e-06);





Evolutionary Antenna Design

• Can evolutionary techniques automatically 
design and optimize antennas that outperform 
antennas from expert antenna designers?

• Can evolutionary techniques design antennas 
where humans are unable to?



Antenna Design

• Evolutionary design of antennas has recently garnered much attention 
• NASA telcomm workhorse; problems: bulky, bandwidth limitations, 

directionality
• Real-world engineering domain
• Many challenging problems
• Spacecraft antennas:

– Mars Odyssey UHF Antenna 
– Optimize e/m and physical dimensions, exploit surroundings
– ST5 Mission



Yagi-Uda Antenna

• Invented 1954, yet 
remains difficult to 
design/optimize: 

– numerous parasitics
– complex interactions
– sensitivity at high 

gain
• Comparison to previous 

work

• Representation 



Yagi-Uda Results

• Results: high-performance Yagi-Uda antenna 
• 7.8% performance improvement in mainlobe gain
• Achieves 13.6% bandwidth while maintaining high 

gain (> 11 dB) 
• Very good impedance characteristics
• Small back/sidelobes

signal



Mars Odyssey UHF Antenna

• UHF Antenna
• Currently orbiting Mars



Mars Odyssey UHF Antenna

• Primary, full-duplex, data link 
between spacecraft and 
landed assets

• Deployed antenna: 
graphite/epoxy Quadrifilar
Helix with small ground plane

• Not designed with 
surrounding structures in 
mind

• Solar panels sometimes 
moved to optimize antenna 
performance

Requirement Value
a Frequencies of Operation 401.5275 MHz, 437.1 MHz
b Power Handling 12 Watts RF continuous
c Channel Bandwidth 500 kHz
d Pattern Requirement Figure 2
e Polarization RHCP
f VSWR 2:1 Maximum
g Envelope Height: 12.2 inches (maximum)

Base: 9 inches (maximum)
Top: 6.25 inches (maximum)

h Mass 1.3 kg (maximum)
i Axial Ratio 5 dB (maximum)



Optimizing a Quadrifilar 
Helical Antenna

• Using the coevolutionary algorithm, we optimized the design 
parameters for a quadrifilar helical antenna:

top diameter

bottom diameter

wire thickness
# wire segments
# turns

height

top diameterbottom diameterwire thickness# turns height# wire segments



Field Patterns

MARS ODYSSEY QHA 
UHF

COEVOLVED QHA UHF

Coevolved antenna is ¼ 
the size (volume)



ST5 Mission

• New Millennium Program 
mission 

• Three nanosats
• Measure effect of solar 

activity on the Earth's 
magnetosphere



Prototyped Evolved Antennas

ST5-3-10 ST5-4W-03





Fault Recovery

Evolutionary
Algorithm

• Description:
– Fault tolerance / self-repair in extreme 

environments 
• High temperature
• High radiation

• Output: adaptive algorithms for autonomous 
self-repair of re-programmable logic chips

• Target Customer: Aerospace Technology, 
Space Science, Earth Science Enterprises

• Impact: increased safety, autonomy
• Schedule: FY04

radiation

damaged logic
board

damaged FPGA

damaged region
detected by

parity/checksum

evolved solution
makes use of

healthy resources

evolutionary
algorithm

chip reprogrammed 
by algorithm

Dynamic Evolution for 
Fault Tolerance



Quadrature Decoder

• Applications requiring determination of angular translation (or speed)
• Example: DC-motor to drive system for a mobile robot we may wish to 

move forward (or reverse) by a fixed distance
• Decoder determines rotation direction



Results

Evolved Quad Decoder Configuration



Hardware Demo
Virtex FPGAs

• are relatively new
• will be used on 2003 MER mission

Demo

FPGA

• 20 random latchup faults are simulated
• Quad decoder is repaired automatically in minutes
• FPGA chip is reprogrammed about 5 times per second – we 

will soon go much faster



Hardware Demo

Virtex





Evolutionary Scheduling

Evolutionary Algorithms
For Scheduling

• Description:
• Inspired by commercial successes of 

evolutionary scheduling, this task seeks to 
apply evolutionary methods to satellite fleet 
scheduling problems:

– Multi-satellite, multi-instrument 
– Constraints: image locations, imager slew 

and duty cycle, memory, downlink locations
– Constraints are complex and poorly 

understood: prime target for an EA
• Impact: automated fleet scheduling new 

capability; improved satellite utilization: 
more science data, less expense

Simplified Satellite Instrument
States Showing Constraints

Genetic Gantt Chart Encoding



Conclusion

• Evolvable Systems research has promising potential in 
NASA applications:

– Antenna design
– Circuit design
– Fault recovery
– Satellite Scheduling

• Evolutionary Algorithms:
– are based on biological metaphors
– have great practical potential
– are getting popular in many fields
– yield powerful, diverse applications 
– inherently parallel
– frequently give high performance against low costs on a 

wide range of problems
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